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Technical Notes Technical Notes

Calculations That Show Comets Began Near Earth
If the most clocklike comets can be shown to have begun
near Earth with a very high probability (>99%), one can
also directly conclude with a high probability that:

◆ The hydroplate theory is basically correct.
◆ Beginning in about 3290 ± 100 B.C., a powerful

catastrophe launched massive amounts of rocks and
water from Earth into space. Some of that material
later merged by known forces to become comets.

If these conclusions are shocking to some individuals,
here is their challenge: Find an error in the calculations
outlined below, or seriously consider the mathematical
conclusions. For more details, see “When Was the Flood?”
on pages 484–486.

Step 1: Download from the internet the two papers
referenced in Endnote 5 on page 486.1 They are located at

http://adsabs.harvard.edu/full/1981MNRAS.197..633Y

and

http://adsabs.harvard.edu/full/1994MNRAS.266..305Y

After reading both papers, set up a workbook in Excel
2007 (or higher) with the following worksheets: 

a. Most Clocklike Comets
b. True Deviations Squared
c. Random Deviations Squared

Data and calculations from worksheets a–b will feed into
subsequent worksheets. 

Set up a table in the “Most Clocklike Comets” worksheet
similar to Table 40 and fill in all 49 rows. The yellow cells will
require simple calculations. Select any Julian date converter
on the internet and become comfortable converting from
calendar dates to Julian dates and vice versa.

Step 2: Set up a table in the “True Deviations Squared”
worksheet similar to Table 41. Designate a row in column
B for each of the past 4,000–6,000 years. In column C,
calculate the corresponding Julian dates. In columns D
and E (for comets Halley and Swift-Tuttle, respectively),
calculate the number of days until (or since) that comet’s
nearest perihelion. Square that number, and place the sum
of those two squared numbers in the corresponding row in

column G.  Place the minimum of the numbers in column
G in cell G1 and the corresponding Julian date and
calendar date in cells G2 and G3. That is the year in which
the three bodies (Halley, Swift-Tuttle, and Earth) were
closest to each other. However, the degree of closeness
may not be statistically significant. That significance will
be determined in Step 3. Plot column G vs. column B
(time), as shown in Figure 253.

Table 40. Comet Convergence, Most Clocklike Comets (Step 1)

A B C D E F G H

1 Comet Halley Comet Swift-Tuttle

2
Perihelion

Date
(Calendar Date)

Julian Date
Latest Period Based

on Julian Date 
(years)

Change 
in Period

(years)

Perihelion
Date

(Calendar Dates)
Julian Date

True Period Based
on Julian Date 

(years)

Change 
in Period

(years)

3 -1403 Oct 15.68109 1208900.181090 -702 Apr 3.28685 1464744.786850

4 -1333 Aug 25.50585 1234416.005850 69.860013 -573 Aug 1.41288 1511981.912880 129.330965

5 -1265 Sep 5.39589 1259263.895890 68.031268 1.83 -446 Jun 2.14601 1558308.646010 126.838391 2.49

6 -1197 May 11.23252 1283983.732520 67.680670 0.35 -321 Sep 27.65803 1604082.158030 125.323722 1.51

... ... ... ... ... ... ... ... ...

47 1910 Apr 20.1785 2418781.677710 74.423873 2.26 1862 Aug 23.42278 2401375.922278 125.186982 2.17

48 1986 Feb 9.4589 2446470.958343 75.810738 -1.39 1992 Dec 12.32394 2448968.823940 130.305046 -5.12

49 Sample Standard Deviation of Period Changes (years): 1.56 Sample Standard Deviation of Period Changes (years): 2.98

1 year =  365.2422 days
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Excel spreadsheets have built in functions that can save
you a great deal of time. Consider using the functions:
SQRT (square root), STDEV (sample standard deviation),
MIN (minimum), and RAND (random number). Also
macros can repeat complex operations in milliseconds.

Step 3: In the “Random Deviations Squared” worksheet,
repeat Step 2, but begin each comet’s backward march
from a random point on its oldest known orbit instead of
its perihelion. With a macro, repeat this process 1,000,000
times (for the time interval 4,000–6,000 years ago) and see
what percent of those random trials produced a clustering
at least as tight as you got in Step 2. Your answer should be
only about 0.6 of 1%. Alternatively, if we began each
comet’s backward projection from a random point on its
oldest known orbit, we would have to search 333,333 years,
on average, to find one clustering that was at least as tight.
[2,000/(0.006)= 333,333]

Step 4:  Calculate the expected error for each comet
individually. Those errors can be determined by three
different methods: A, B, and C. All give the same answer.
Method A, a simple, intuitive approach, will now be
explained using comet Halley as an example. 

Method A: Geometric. Visualize a timeline extending
back in time from Halley’s oldest known perihelion in
1403.80 B.C.  If we tick off exactly 27 69.86-year
increments on that timeline, we will be at 3290 B.C.—our
best estimate for the time of the flood, but an estimate
with some uncertainty on either side of 3290 B.C. How
large is that uncertainty?

Our best guess for all 27 time increments was the oldest
known period (69.86 years), but there is an unknown
error, x1, in the first unknown orbital period. That first
period, now with a known but slightly different length of
69.86 + x1, becomes our best guess for all earlier periods,
making the total error in our 3290 B.C. date for the flood,
based just on the length of the first unknown period,
27 times x1. (The random number, x1, will be drawn from
a normal distribution with a mean of zero and a standard
deviation of 1.56 years.) With that first unknown period
now known, we can repeat these steps for the next
unknown period. That adds an error of 26 times x2.
Generalizing, the expected error for either comet becomes:

Total Error =
Nx1 + (N-1)x2 + (N-2)x3 + ... + 3xN-2 + 2xN-1 + xN 

where N, the number of periods a comet must take in
going from its oldest known perihelion back to the best
estimate for the time of the flood. For comet Halley,
N=27.000. For comet Swift-Tuttle, N=20.000. Because
the Total Error above is the sum of N independent random
variables, such as Nx1 and (N-1)x2, the standard deviation
of the Total Error is 

For comets Halley and Swift-Tuttle, these values are 130
years and 159 years, respectively.

Method B: Algebraic. For a particular comet:
t0: the Julian date for the oldest known perihelion
ti : an estimate of the Julian date for the ith unknown perihelion
P0:  the oldest known period

Table 41. Comet Convergence, True Deviations Squared (Step 2)

A B C D E F G

1 Comet Halley Comet Swift-Tuttle Minimum Sum of Squares in Column G: 1,210

2 Oldest Known Perihelion 1208900.181090 1464744.786850 Julian Date: 519968 

3 Oldest Period (Julian Days) 25515.82 47237.13 Calendar Date: 3290 B.C.

4 Years 
Ago

Julian 
Date

 Deviations from Perihelion Squared 
(Julian Days)2

Sum of Columns
D and E

5 4000 995513 85,717,656 9,870,112 95,587,768

6 4001 995148 92,614,162 7,708,570 100,322,733

7 4002 994783 99,777,472 5,813,833 105,591,305

8 4003 994417 107,207,586 4,185,899 111,393,484

... ... ... ... ... ...

2004 5999 265394 377,999 339,907,280 339,656,279

2005 6000 265029 46,714 352,907,638 352,954,352
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Pi:  an estimate for the ith unknown period
xi: the ith random variable from a [0, s] normal distribution of the changes in successive orbital periods of a comet

t1 =  t0 - P0 + x1 P1 = t0-t1 =  P0- x1 

t2 = t1 - P1+ x2 = (t0 - P0+ x1) - (P0- x1) + x2 = t0 - 2P0+ 2x1 + x2 P2 = t1-t2 = P1-x2 = (P0- x1) - x2 = P0-x1 - x2

t3 = t2 - P2+ x3 = (t0 - 2P0+ 2x1 + x2) - (P0-x1 - x2) +x3 = t0 - 3P0+ 3x1 +2x2 + x3 P3 = t2-t3 = P2-x3 = (P0-x1 - x2) - x3 = P0-x1 - x2 -x3

…
tN = t0 - NP0 + Nx1 + (N-1)x2 + (N-2)x3 + ... + 3xN-2 + 2xN-1 + xN 

Methods A and B produce identical results and have
probability distributions that depends on only s and N. 

Method C: Simulation. Instead of working with the long
summations in Method B, a computer can generate each
xi as a random number from a [0, s ] normal distribution
and substitute them in the equations:

t1 = t0 - P0 + x1 P1 = t0 - t1 
t2 = t1 - P1 + x2 P2 = t1 - t2
t3 = t2 - P2 + x3 P3 = t2 - t3

…
tN = tN-1 - PN-1+ xN 

Each sequence of N random numbers (x1, x2, …, xN) will
give one simulated date for the flood, which will, in general,
differ from 3290 B.C. Thousands of those simulated dates
will give us the error estimates for each comet individually
(of 130 and 159 years) that were found exactly in Methods A
and B. Adding the additional information that both comets
formed at about the same time—based on the statistical
significance of >99%—allows the combined error estimate
for the date of the flood to be reduced to ± 100 years.

Figure 253: Comet Clustering. The tight clustering of comets Halley and Swift-Tuttle with Earth in 3290 B.C. (as shown above) does not mean that was the
year of the flood.  It simply means that 3290 B.C. is the most likely year of the flood, based on these calculations. As shown by the red normal distribution,
the flood could have occurred within a hundred or so years of that date. The depth of this downward spike in 3290 B.C., however, is quite unusual. Had the
backward projection of Halley and Swift-Tuttle started at a random point on their oldest known orbits instead of at their perihelions, it would take, on
average, 333,333 years before a similar tightness of clustering of these three bodies (Earth and comets Halley and Swift-Tuttle) would be found.  Is it merely
a coincidence that we found a one-in-333,333-year event very near the time of the historical global flood—after a backward search of only 1290 years?

Also, basic physics tells us that gravitational perturbations are as likely to increase a comet’s period as to decrease a comet’s period; that is, a gravitational
body, such as a planet, is as likely to pass in front of an orbiting comet at a certain distance as to pass behind it at that distance. While we may not know
how the unknown periods changed, the statistical mean of those changes will be zero; therefore, the mean of the possible dates for the flood is 3290 B.C.

100

103

102

101

106

107

108

109

104

105

4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000
years
ago

3290 B.C

B.C.
3000 B.C.2000 B.C. 2500 B.C. 3500 B.C. 4000 B.C.

tig
ht

ne
ss

 o
f c

lu
st

er
in

g 
of

Ea
rth

, H
al

le
y, 

an
d 

Sw
ift

-T
ut

tle

Su
m

 o
f S

qu
ar

es
 (J

ul
ia

n 
Da

ys
)2



Calculations That Show Comets Began Near Earth  577
Technical Notes

References and Notes

1. For comet Halley, the computation by Kiang and Yeomans
was terminated in 1404 B.C., because Halley passed close to
Earth (0.04 AU). Earth’s gravitational perturbation would
have injected a large error that could not be rectified by a
human observation even further back in time. With comet
Swift-Tuttle, the backward computation by Yeomans et al.
was terminated in 702 B.C for a similar reason.
Ending the backward projection was proper, because too
much precision would have been lost for all earlier dates.
An analogous situation occurs if someone is adding a
thousand numbers, one of which has great uncertainty
compared to all others. It makes no sense to claim high
precision for the sum or to strive for further precision for
the 999 good numbers when one number has little accuracy.
That low precision number becomes the weak link in the chain.

However, with the statistical method used here, we are not
forcing Halley and Swift-Tuttle to pass through (or near)
points in space at specific times long ago.We are only looking
for the tightest clustering of three bodies (Halley, Swift-Tuttle,
and Earth) within a 2,000-year window: 4,000–6,000 B.C.
Then we compare that tightness with the tightest clustering of
those three bodies in that same 2,000-year window for each
of a million random orbits of the two comets back to 6,000
B.C.  Using the same step-back procedure, each of the million
“step backs” begins not at their earliest known perihelion
point, but at a random point on its earliest known orbit.
It turns out that less than 1% of the random orbits can produce
a tighter clustering. Therefore, even though each comet expe-
rienced a large perturbation error, less than 1% of the random
orbits could beat our actual orbit—a highly significant result.

Figure 254: Probabilities for Perihelion Passage Dates. We have shown
that if comets Halley and Swift-Tuttle had been projected back in time from
their oldest known perihelions and with their oldest known periods, both
comets would pass perihelion in the year 3290 B.C.  Halley would have
taken exactly 27 orbits and Swift-Tuttle exactly 22 orbits.

We also showed how unusual it is for both comets to be so close to Earth
in any single year in the 2,000-year window in which almost all Bible
scholars place the flood.  Such a tight convergence would only happen
0.6 of 1% of the time.  Nevertheless, the hydroplate theory explains why
they were so close in the year of the flood.

Of course, each comet’s period would have changed slightly with each orbit,
so while the year 3290 B.C. might be our best guess if we had to pick only one
year for the comet’s simultaneous convergence with Earth, other years for
the three-body convergence are also possible on either side of 3290 B.C.
Projecting Halley back 27 orbits and allowing planetary perturbations
similar to those seen with Halley’s most recent 45 orbits give us the
distribution of possible years shown in Figure A above. Likewise, Figure B
above gives the probability distribution of the possible years in which
Swift-Tuttle passed perihelion on its 22nd orbit back in time from where we
know it was on 702.30 B.C.

Finally, we have one other piece of information. Given that we are 99.4%
confident that Halley and Swift-Tuttle were both near Earth in the same year,
we will add the constraint to Figures A and B above that Halley made its 27th
perihelion pass in the same year Swift-Tuttle made its 21st perihelion pass. 

It can be shown, with some calculus and probability theory, that distribu-
tion C gives the probabilities—for each of the years on either side of 3290

B.C.—that both comets were simultaneously near Earth on a single year.
That distribution has a standard deviation (sc ) of 

where Halley’s and Swift-Tuttle’s standard deviation in Figures A and B
above were 130 years and 159 years, respectively.
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